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Abstract

1 Variance-covariance matrix

Given a vector of random variables:

which is zero for independent variables (two variables are independent if they
are not correlated).

The covariance matrix ¥ is defined as the matrix whose (¢, j) components are
the covariances:

Yij = cov(Xi, Xj) = B[(Xi — pa) (X — )]
where
pi = E(X;) ,

is the expected value of the X; variable. That is, for a discrete random variable
X with probability mass function p(z):

E(X) = inp(l“i) )

of course, for the continous case it is an integral.
Note that for ¢ = j the covariances become the variances, as »_,, = E[(X; —

wi)?] = var[X;)].
The variance-covariance matrix thus has the form
E[(X1 — ) (X1 —p1)] E[(Xy = p1) (X2 —p2)] -+ E[(X1 — pa) (X — )]
_ E[(Xo — p2) (X1 — )] El(Xo —p2)(Xo —p2)] -+ E[(Xo — p2)(Xn — pin)]
B{(X, — ) (X1 — )] El(Xo — )Xo — )] -+ Bl(X = pin) (X — )]

It is a positive semi-definite symmetric matrix.



2 Mass resolution

In our case the function whose variance we want to compute is the resonance

mass, which is a function of the kinematic variables of the two muons M(pr, , cotg(61), ¢1, pr,, cotg(b2), P2)
and these are correlated variables. We should than compute the variance of M

from standard error propagation:
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The variance-covariance matrix in our case has more symmetries that can be
exploited:

[var(pr,) cov(pry,cot(f1))  cov(pry, 1) cov(pry , $2) cov(pry , cot(62)) cov(pry, pr,) ]
: var(cot(f1))  cov(cot(61),¢1) cov(cot(fh),da) cov(cot(6r),cot(B2))  cov(cot(1),pry)
. var(é1) cov(¢1, ¢2) cov(¢1, cot(62)) cov(¢1),pT,) ’
var(¢2) cov (g2, cot(62)) cov(¢2), pT,)
: var(cot(62)) cov(cot(62), pr,)
i ' var(pr,) ]

where we omitted writing the symmetric part. A specific symmetry we can use
comes from the fact that the two muons are undistiguishable (note that we are
not taking into account the charge and in the code, but in the code pu; is always
the minus charged muon), that is we can exchange index 1 with 2 and obtain
the same result.

This means that the covariance terms opposite with respect to the anti-diagonal
are the same (e.g. cov(cot(61),pr,) = cov(cot(hs), pr, ), and also cov(cot(61), pr,) =
cov(cot(f2), pry ).

Furthermore, the variances of single muon quantities depend only on the detec-
tor and algorithms used, not on the resonance from which they decayed, there-
fore var(pr, ) = var(pr,), var(cot(61) = var(cot(f2)) and var(¢;) = var(eds).

With these simplifications the matrix becomes
[var(pry) cov(pry,cot(61))  cov(pr,¢1) cov(pry , $2) cov(pry,cot(02))  cov(pry,pry)]
: var(cot(61)) cov(cot(01),¢1) cov(cot(f1),¢2) cov(cot(1),cot(h2))

var(¢y) cov(1, ¢2)

where, as before, only the independent components are written. So ultimately,
the independent components we need to compute are:

var(pr), var(cot(0)), var(¢),

cov(pr,cot(9)), cov(pr,d), cov(cot(d), ),



COV(pTUpTz)’ COV(COt(Ql)cht(QQ))7 COV(¢17¢2)7
COV(pT<1,2>7COt(‘g(Zl)))v COV<pT<1,2)7¢(2,1)))7 COV(COt(9(1,2))a¢(2,1)) )

where line two refers to same-muon quantities and the indeces in line four in-
dicate that we must use both permutations. Indeed, since we take p; undis-
tiguishable from po, we can use both muons to compute the same variance or
covariance.

The covariances are specific for each resonance.

3 Parameters reduction

Using the full set of twelve independent functions needed to express the mass
resolution as a function of muon kinematics would lead to an unacceptably large
number of parameters. One approach can be to look at the contribution of every
single term in the variance expression,
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to determine the negligible terms and use only the most important ones.
It would also be possible to insert the full equation and unlock the parameters
of lower order terms only in successive iterations.

3.1 Terms comparison

The covariance terms depend on the resonance. We consider here a sample of
10.000 Y. All the results shown here refer to this sample and we will need to
repeat this study for each resonace. We show in figures ??7 the error function
terms obtained multiplying the partial derivatives:
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by the corresponding covariance term. All the terms which have the same
covariance are put together and the appropriate coefficient is used.

We compare the oj; obtained from MC comparison with the one we get
from the error propagation by including only the py term. The inclusion of
other terms does not change the result significantly.
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(a) Mass resolution from comparison with (b) Mass resolution from error propagation
MC. using only the pr term.
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Figure 1: Difference of the resolutions in figures 2(c) and 2(d).
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3.2 J/V¥ sample

We repeat the resolution check on the full sample of J/¥ events at our disposal.
The results are reported in figure 7?7
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(¢) Mass resolution from comparison with (d) Mass resolution from error propagation
MC. using only the pr term.
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Figure 2: Difference of the resolutions in figures 2(c) and 2(d).

4 Functional form for resolution fit

In the previous section we found that the dominant term in the error propagation
expression was the term of opr. We want to determine a functional form for
the opr/pr as a function of pr and 7. This will allow the fit to extract the
parameters of the resolution on the py of the muons from the expression of the
resolution on the mass of the resonance.

In order to derive this expression we want to factorize the dependence on
pr and 7, fit them separately and then put them together. Using simple 1d fits
we have much more control on the convergence. The resolution on the pr of a
muon only depends on the characteristics of the detector and on reconstruction
algorithms, so in principle muons from any source could be used to extract
the functional form. However, the statistics at our disposal are limited and
the correlations between muons from resonances lead to having a big bias to
the distribution of opr/pr that we can derive from those samples. To avoid
this problem we simulated 100.000 muons from a muon gun source with a flat
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(a) Resolutions difference vs pr. (b) Resolutions difference vs 7.

spectrum in pr € [5,100] and n € [—3,3]. Since these muons are really (to
a good approximation) uncorrelated we can factorize and fit the dependences
separately. The distributions of opr/pr vs pr and n are shown in figures 3(c)
and 3(d) respectively. The opr/pr is fitted with a function of the form par[0] +
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(¢) opr/pr vs pr. The function fitted is a (d) opr/pr vs n. To better describe the
1/pr dependence. spikes at n &~ 1 we used a per-point func-
tion.

par[1]/pr and the values of the parameters are also shown in the figure. For
the n dependence we used a per-point function with a different value in each
bin, in order to better describe the spikes at n ~ 1. In this case the only free
parameter is the overall scale of the function par[0] which again is reported in
the corresponding figure.

Deriving the values of opr/pr vs pr and n from the projections we get:
opr/pr(pr) + c1 and opr/pr(n) + c2. ¢1 and ¢z contain the mean contribution
from 7 and pr respectively. Since we were using a muon gun, with muons
distribution isotropic in pr and 7, the mean value in pr does not depend on
7 and vice versa. This allowed us to factorize the dependence. When we put
the two functions together though, we get: opr/pr(pr,n) = opr/pr(pr) +
opr/pr(n) + ¢1 + c2, which means a double counting of the contributions. From
the factorization we deterimined the shape of the functional form, but not the
scale. To deterimine the scale factor ¢ # ¢1 + co we require the opr/pr(pr,n)
function for a given point. We use the distribution of the variance var,, (pr,n)
and chose the bin with pr = 5 and n = 0 because was in a region with good
statistics. Since we are interested in finding a starting value for the fit and not



a very precise function we can accept to have a big uncertainty on the scale
factor.

In the following we report the values used for the fit.

For 1 by-points the 0-0.2 bin is 0.00942984 and the parameters of opr /pr(pr)
are: par[0] = 1.205793e — 02, par[1] = 2.047489¢ — 04. For pr = 5 we get 0.0131,
thus opr/pr(pr = 5,7 = 0) = 0.0094 + 0.0131 = 0.0225 The value of this bin
from the \/var(pr) = 0.00720. Requiring the equality of the two values we
derive the value we need to sum to the constant to be ¢ = —0.015. The scale
of the resolution function changes from par[0] to par[0] + ¢ = 0.012 — 0.015 =
—0.003.



